Management Platform, Sum of
Technologies (part 1).

written by Manoj Khanna | September 28, 2005

Since no one attempted to disprove statement I made in my last
post (Management platform, Open source or bust. 09/15/2005) I
will assume that every one think that Open Source Management
Platform is a brilliant idea (just for the records, I can not
claim ownership of this particular idea, but it does not make
it any less brilliant). Today I will try to create “shopping
list” of other Open Source projects which could be used as a
building blocks for such Platform.

But of course, Java

This is not per-say open source project, but none of the less
choice of “the language” will play major role in selection of
Open Source projects available for consideration. In my mind,
there is only one answer to this — Java. Despite relentless
attempts by Mr. Gates, enterprise networking landscape 1is as
diverse as ever. And the only way to avoid porting nightmare
is to do Java. It might not be 100% “write once, run
anywhere”, but for none-GUI applications it is damn close.
Last thing to consider in regards to “the language” 1s what
version of Java to use? It is very tempting to go along with
Java 5.0 but I think we need to stick with 1.4. Though Java
5.0 provides bunch of new functions/features none of them are
“must have” kind and I have a feeling that its proliferation
in the “enterprise world” is not that wide yet (just a couple
years ago I run into customer who still used 1.1.8)

Built to be customizable

There are at least two level of customization which need to be
addressed:

ability to add new functional modules (plugins),

ability to implement new functions by combining basic
functions provided by plugins.

Many Open Source (and closed source) applications implement

https://mk.sntio.com/2005/09/28/management-platform-sum-of-technologies-part-1-2/
https://mk.sntio.com/2005/09/28/management-platform-sum-of-technologies-part-1-2/

support for plugins in one way or another. I think JBoss does
it best. JBossMX is clean room implementation of Sun JMX API.
It is available as a part of JBoss server source distribution.
One additional benefit of using JBossMX as a “container” 1is
ability to do “cross-plugging”. It should be possible to plug
JBoss modules into the Platform and Platform modules into
JBoss!

With such a flexible container as a JBossMX it will be a shame
to require to do any Java codding to implement “new
functions”. Also if we are trying to build Platform which
could be “customized” by end user it is not reasonable to
expect such an end user to know how to program in Java. What
we need is nice scripting language. It should be:

well known (we do not wont to invent our own and then expect
people to learn it)

= reasonably powerful
» easily extendable
» with available Java binding.

Choosing the scripting language is always rather “emotional”
affair. Every one has its own favorite. I have my personal
favorite too — JavaScript. And to be more exact — Rhino
JavaScript engine from Mozilla folks. Let see if it satisfy
requirements we set for the scripting language. No one will
object that JavaScript is “well known”. What about “reasonably
powerful”? To my taste it strike nice balance between been 00
language (you can “simulate” such 00 features as class
definitions, instance and class members, class inheritance,

) and been typeless forgiving scripting language. Rhino
provides us with two level of extensibility: Host Objects and
direct to Java interface. Between these two it is possible and
very easy to add any kind of functionality to it. Some people
will say that Java itself is not exactly speed daemon and
Rhino (been scripting language implemented in Java) must be
even slower. There are two answers to this concern:

= Java is plenty fast if used properly and Rhino in most

cases at least as fast — it actually capable of
producing Java byte code,

»We are talking about “scripting” language. The glue to
assemble new functions from basic functionality provided
by plugins. In most cases all “heavy lifting” should be
done in plugin code, so actual performance of scripting
engine 1is more or less irrelevant.

Networking

It goes without saying that our Platform will have to be
distributed. Many components of it will be spreaded across
enterprise network. These components will have to learn about
each other existence and they will have to be able to
communicate with each other. To make things even more
“interesting”, most likely these components will be deployed
into many different sub-nets with many network devices (like
routers and firewalls) between them. It is almost guarantied
that many of them will not have a luxury of “direct
communications” to each other.

I might be biased, but as far as I know the only Open Source
project which fit the bill is JXTA. It has Java binding, it
provides excellent set of “discovery” functions, it provides
ways to communicate in “request-response” and “fire-and-
forget” manner and it does all these while completely hiding
physical network topology. You can have 10 firewalls and 20
routers between two of your JXTA applications and still from
programming point of view it will not look any different from
them been running on the same sub-net. As an added bonus, JXTA
has Java ME binding (for those “itsy bitsy” devices which can
not support full Java) and C++ binding.

Conclusion (of part 1)

So far our platform looks like JMX container (courtesy of
JBossMX project) with two plugins in it:

= Rhino Java Script Engine (with collection of Host
Objects which provide access to any other plugins loaded
into the local or remote JMX container)

= JXTA plugin (providing platform components discovery
and communicate functionality)

Next time we are going to discuss Storage requirements and
ways to interface with outside world entities (like humans,
report writers, ..)

© Manoj Khanna 2003 — 2012.

